

ヒト人工多能性幹細胞 (iPSC) の3次元骨分化 誘導培養による骨形成細胞集合体の開発

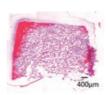
岡村 建祐

Kensuke Okamura

整形外科学/診療助教

■キーワード iPS、骨分化誘導、3次元培養

シーズ概要


ヒト幹細胞を用いた再生医療は、人体の様々な器官・組織 への応用が期待されているが、先天性骨形成異常・広範囲骨 欠損・骨粗鬆症等を有する患者に対しても例外ではない。た だしその実用化には、移植細胞の保持性・生存率・骨形成効 率等の問題を解決する必要がある。我々は既にヒトiPSC を 用いた2次元的な骨分化誘導実験による骨形成細胞シート (OSC) の作成に成功していたが、新たに細胞の形態・生存 率・分化能・刺激への反応性等で優れるとされる3次元培養 を行い、骨形成細胞集合体の作成にも成功した。そしてその 骨形成能のより正確な評価のため、リアルタイム PCR (RTqPCR) に用いるべき最も安定性の高い参照遺伝子を実験デ ザイン毎にそれぞれ特定することに成功した。

剥離した OCS

ウシコラーゲンスポンジ を用いた3次元培養で 認めた石灰化 (アリザリ ンレッド染色)

研究成果の応用可能性

近年iPSCを用いた研究技術の進歩は目覚ましく、設立準 備が進められている「iPS細胞バンク」を利用し、正常個体の体 細胞由来のiPSCを骨分化誘導し、難治性骨折患者等へ移植 する治療の実現が期待されている。本研究を更に発展させ、よ り骨形成能の高い骨形成細胞集合体の作成法が確立されれ ば、上記治療の実現に貢献できると考える。

Appeal Point

アピールポイント

今後多方面で発展が期待 されるヒト iPSC 実験の技 術確立は骨関節分野でも重 要であるが、骨分化誘導の 成果を簡便かつ正確に評価 するための条件を既に上記 研究過程で明らかにしてお り、これは上記研究の発展 に必須の情報である。

関連文献/特許

1.Okamura Kensuke, et al. Scientific Reports. 2020,10(1),11748.